GCSE Design and Technology Unit 1 4121-01

All Candidates' performance across questions

Section B

Marked out of $60 \quad 60$ minutes
5. This question is about Commercial Manufacturing Processes. It is worth a total of 10 marks.
(a) Study the images of a wave soldering machine shown below.

Complete the table below by describing what happens to a PCB during the wave soldering process at stages \mathbf{A}, \mathbf{B} and \mathbf{C}.

(b) Explain why quality control checks are important to the manufacturer when producing
products.
[2]

Examiner only
(c) The image below shows an automated final function test being carried out at the end of the assembly process.

Explain how automating the test procedure benefits the manufacturer.
Section B
of $60 \quad 60$ minutes
5. This question is about Commercial Manufacturing Processes. It is worth a total of 10 marks.
(a) Study the images of a wave soldering machine shown below.

Complete the table below by describing what happens to a PCB during the wave soldering process at stages \mathbf{A}, \mathbf{B} and \mathbf{C}.

(b) Explain why quality control checks are important to the manufacturer when producing products.

(c) The image below shows an automated final function test being carried out at the end of the assembly process.

Explain how automating the test procedure benefits the manufacturer.

 AlSO data can be cheeked so any default is easily picked us.

Section B

Marked out of $60 \quad 60$ minutes
5. This question is about Commercial Manufacturing Processes. It is worth a total of 10 marks.
(a) Study the images of a wave soldering machine shown below.

Complete the table below by describing what happens to a PCB during the wave soldering process at stages \mathbf{A}, \mathbf{B} and \mathbf{C}.

Section B

Marked out of $60 \quad 60$ minutes
5. This question is about Commercial Manufacturing Processes. It is worth a total of 10 marks.
(a) Study the images of a wave soldering machine shown below.

Complete the table below by describing what happens to a PCB during the wave soldering process at stages A, B and C.

Stage	Description
A	PCB's are moved along the Convayer bes belt
B	The Pc B's are heated by heaters
C	Solder is Applyed to the PCB'S

(b) Explain why quality control checks are important to the manufacturer when producing products.
To make sore the product works
\qquad
\& making the Product at a good Quality
(c) The image below shows an automated final function test being carried out at the end of the assembly process.

Explain how automating the test procedure benefits the manufacturer.
\qquad workers and is done at a constant high quality.

Section B

Marked out of $60 \quad 60$ minutes
5. This question is about Commercial Manufacturing Processes. It is worth a total of 10 marks.
(a) Study the images of a wave soldering machine shown below.

Complete the table below by describing what happens to a PCB during the wave soldering process at stages A, B and C.

(b) Explain why quality control checks are important to the manufacturer when producing products.
\qquad
correctly and that they can carry on * making the product at a good Quality
(c) The image below shows an automated final function test being carried out at the end of the assembly process.

Explain how automating the test procedure benefits the manufacturer.
\qquad
\qquad
constant high quality.
Section B
Marked out of $60 \quad 60$ minutes
5. This question is about Commercial Manufacturing Processes. It is worth a total of 10 marks.
(a) Study the images of a wave soldering machine shown below.

Complete the table below by describing what happens to a PCB during the wave soldering process at stages \mathbf{A}, \mathbf{B} and \mathbf{C}.
pase

 products.

$$
\begin{aligned}
& \text { PCB Populated w! components } \\
& \text { PCB soldered }
\end{aligned}
$$

Section B
Marked out of $60 \quad 60$ minutes
5. This question is about Commercial Manufacturing Processes. It is worth a total of 10 marks.
(a) Study the images of a wave soldering machine shown below.

Complete the table below by describing what happens to a PCB during the wave soldering process at stages \mathbf{A}, \mathbf{B} and \mathbf{C}.

Rance

6. This question is about Materials and Components. It is worth a total of 15 marks.
(a) Study the mechanism shown below.

(i) Circle the correct name for this mechanism.

Pawl and ratchet
 Cam and follower
 Crank and slider

(ii) Complete the statement below by adding the correct type of motion.

This mechanism converts \qquad motion to motion.
(b) The gear system shown below is used to power a toy train.

(i) Complete the table below by placing a tick (\checkmark) to show whether each statement is true or false.

Statement	True	False
The train uses a compound gear system.		
Gear X will go slower than the 36 Teeth Gear.		

(c) Components are soldered onto the PCB to construct circuits. Study the soldered joints below.

Component
(i) State which joint is soldered correctly:
(ii) Describe what has caused the solder to take the shape shown in joint A.
\qquad
\qquad
(d) Complete the table by sketching the correct symbol for each electronic component. [3]

(e) Complete the truth table for the logic gate shown.

A	B	OUT
0	0	0
1	0	
0	1	
1	1	

6. This question is about Materials and Components. It is worth a total of 15 marks.
(a) Study the mechanism shown below.

(i) Circle the correct name for this mechanism.
(ii) Complete the statement below by adding the correct type of motion.

This mechanism converts rotary motion to Cnear motion.
(b) The gear system shown below is used to power a toy train.

(i) Complete the table below by placing a tick (\checkmark) to show whether each statement is true or false.

Statement	True	False
The train uses a compound gear system.		
Gear X will go slower than the 36 Teeth Gear.		

(ii) Calculate the rotational velocity (RV) of Gear \mathbf{X} when the motor rotates at 20 rpm . (Show all your workings.)
 80 rpm
(c) Components are soldered onto the PCB to construct circuits. Study the soldered joints below.

Component
Soldered joint A
Soldered joint B
Soldered joint C
(i) State which joint is soldered correctly: \quad.
(ii) Describe what has caused the solder to take the shape shown in joint A .
there is a dry sole in icon th is is
 the copper getting to the track
(d) Complete the table by sketching the correct symbol for each electronic component. [3]

(e) Complete the truth table for the logic gate shown.

A	B	OUT
0	0	0
1	0	0
0	1	0
1	1	1

6. This question is about Materials and Components. It is worth a total of 15 marks.
(a) Study the mechanism shown below.

(i) Circle the correct name for this mechanism.
(ii) Complete the statement below by adding the correct type of motion.

This mechanism converts rotary motion to

Conear motion.
(b) The gear system shown below is used to power a toy train.

(i) Complete the table below by placing a tick (\mathcal{J}) to show whether each statement is true or false.

Statement	True	False
The train uses a compound gear system.		
Gear X will go slower than the 36 Teeth Gear.		

(c) Components are soldered onto the PCB to construct circuits. Study the soldered joints below.

Component
Soldered joint A
Soldered joint B
Soldered joint C
(i) State which joint is soldered correctly: C
(ii) Describe what has caused the solder to take the shape shown in joint A.
......there is a dry solder icont th is is
 the copper getting to the crock
(d) Complete the table by sketching the correct symbol for each electronic component. [3]

(e) Complete the truth table for the logic gate shown.

A	B	OUT
0	0	0
1	0	0
0	1	0
1	1	1

6. This question is about Materials and Components. It is worth a total of 15 marks.
(a) Study the mechanism shown below.

(i) Circle the correct name for this mechanism.

Pawl and ratchet
 Cam and follower

(ii) Complete the statement below by adding the correct type of motion.

This mechanism converts rotary motion to OCillary motion.
(b) The gear system shown below is used to power a toy train.

(i) Complete the table below by placing a tick (\checkmark) to show whether each statement is true or false.

Statement	True	False
The train uses a compound gear system.	\checkmark	
Gear X will go slower than the 36 Teeth Gear.		\nearrow

(ii) Calculate the rotational velocity (RV) of Gear \mathbf{X} when the motor rotates at 20 rpm .

$$
36 \div 18=2 r v
$$

(c) Components are soldered onto the PCB to construct circuits. Study the soldered joints below.

Component
Soldered joint A

Soldered joint B

Soldered joint C
(i) State which joint is soldered correctly:
(ii) Describe what has caused the solder to take the shape shown in joint A.
(d) Complete the table by sketching the correct symbol for each electronic component.
(2)
(e) Complete the truth table for the logic gate shown.

A	B	OUT
0	0	0
1	0	1
0	1	1
1	1	2

6. This question is about Materials and Components. It is worth a total of 15 marks.
(a) Study the mechanism shown below.

(i) Circle the correct name for this mechanism.

Pawl and ratchet
 Cam and follower

(ii) Complete the statement below by adding the correct type of motion.

This mechanism converts
 motion to OCillary
(b) The gear system shown below is used to power a toy train.

(i) Complete the table below by placing a tick (\checkmark) to show whether each statement is true or false.

Statement	True	False
The train uses a compound gear system.	\checkmark	
Gear X will go slower than the 36 Teeth Gear.		

(ii) Calculate the rotational velocity (RV) of Gear \mathbf{X} when the motor rotates at 20 rpm . (Show all your workings.)
[3]

$$
36 \div 18=2 r v
$$

\qquad
(c) Components are soldered onto the PCB to construct circuits. Study the soldered joints

Compo
below.

Soldered joint B

Soldered joint C
(i) State which joint is soldered correctly:
(ii) Describe what has caused the solder to take the shape shown in joint A.

Component

Soldered joint A
the
co
component! without.
(d) Complete the table by sketching the correct symbol for each electronic component.

(e) Complete the truth table for the logic gate shown.

A	B	OUT
0	0	0
1	0	1
0	1	1
1	1	2

6. This question is about Materials and Components. It is worth a total of 15 marks.
(a) Study the mechanism shown below.

(i) Circle the correct name for this mechanism.
(ii) Complete the statement below by adding the correct type of motion.

This mechanism converts motion to rota by \qquad motion.
(b) The gear system shown below is used to power a toy train.

(i) Complete the table below by placing a tick (\checkmark) to show whether each statement is true or false.

Statement	True	False
The train uses a compound gear system.		
Gear X will go slower than the 36 Teeth Gear.		

(ii) Calculate the rotational velocity (RV) of Gear \mathbf{X} when the motor rotates at 20 rpm. (Show all your workings.)

$$
18 \times 20=360
$$

(c) Components are soldered onto the PCB to construct circuits. Study the soldered joints below.

(i) State which joint is soldered correctly: \qquad C
(ii) Describe what has caused the solder to take the shape shown in joint A.

(d) Complete the table by sketching the correct symbol for each electronic component.

(e) Complete the truth table for the logic gate shown.

A	B	OUT
0	0	0
1	0	1
0	1	1
1	1	1

6. This question is about Materials and Components. It is worth a total of 15 marks.
(a) Study the mechanism shown below.

(i) Circle the correct name for this mechanism.

This mechanism converts

> Cam and follower

Crank and slider Pawl and ratchet
ι^{C} ,

Crank and slider
(ii) Complete the statement below by adding the correct type of motion.
\qquad motion to rotary) motion.
linear

\qquad
(b) The gear system shown below is used to power a toy train.

(i) Complete the table below by placing a tick (\mathcal{J}) to show whether each statement is true or false.

Statement	True	False
The train uses a compound gear system.		
Gear X will go slower than the 36 Teeth Gear.		

(ii) Calculate the rotational velocity (RV) of Gear \mathbf{X} when the motor rotates at 20 rom.
Examiner (Show all your workings.)
[3]
$18 \times 2 \times 36=$
(c) Components are soldered onto the PCB to construct circuits. Study the soldered joints below.

(i) State which joint is soldered correctly: \qquad C
(ii) Describe what has caused the solder to take the shape shown in joint A.
(d) Complete the table by sketching the correct symbol for each electronic component.

(e) Complete the truth table for the logic gate shown.

A	B	OUT
0	0	0
1	0	1
0	1	1
1	1	1

8. This question is about ICT, CAD, CAM, Systems and Processes. It is worth a total of 15 marks.
(a) The remote controlled automatic garage door below operates when a remote control is used.

Outside

Inside

When the user presses the yellow button the garage door opens, when the blue button is pressed the door closes. During operation a courtesy light on the Control Unit inside the garage illuminates.
(i) Name one input to the garage door system.
(ii) Name one output to the garage door system.
(iii) Describe the reason for the courtesy light on the Control Unit.
(b) The flowchart below shows how the garage door system is controlled.

Complete the flowchart by placing the statements in the correct positions and adding any missing feedback loops.

Note: Motor forwards opens the door, assume the door is closed at the start.

(c) The flowchart could be modified to include an interrupt system.

Give two reasons why this interrupt needs to be added to the flowchart.
Reason 1:
8. This question is about ICT, CAD, CAM, Systems and Processes. It is worth a total of 15 marks.
(a) The remote controlled automatic garage door below operates when a remote control is used.

Outside

Inside
Garage Door

Control Unit with light and motor

Remote Control

When the user presses the yellow button the garage door opens, when the blue button is pressed the door closes. During operation a courtesy light on the Control Unit inside the garage illuminates.
(i) Name one input to the garage door system.

Remote ko The buttons on the remote
(ii) Name one output to the garage door system.
the maker opening the th er dor
(iii) Describe the reason for the courtesy light on the Control Unit.

the units are mounted in the mid der. in . of the gorrouge and this is where the light usoully is. This also helps to save power since the light will only $6 e$ on when needed
(b) The flowchart below shows how the garage door system is controlled.

Complete the flowchart by placing the statements in the correct positions and adding any missing feedback loops.

Note: Motor forwards opens the door, assume the door is closed at the start.

(c) The flowchart could be modified to include an interrupt system.

Give two reasons why this interrupt needs to be added to the flowchart.
Reason 1:it Shows \qquad Ene An (lion \qquad for if both

Geftons are pressed.
Reason 2: alow............the the
rom
an........... motor :
 wop since it is roo a common function.

END OF PAPER

8. This question is about ICT, CAD, CAM, Systems and Processes. It is worth a total of 15 marks.
(a) The remote controlled automatic garage door below operates when a remote control is used.

Outside

Inside
Garage Door

Control Unit with light and motor

Remote Control

When the user presses the yellow button the garage door opens, when the blue button is pressed the door closes. During operation a courtesy light on the Control Unit inside the garage illuminates.
(i) Name one input to the garage door system.

Remote the Gallons on the remote
(ii) Name one output to the garage door system.
the maker opening the tor dor
(iii) Describe the reason for the courtesy light on the Control Unit.

This allows the user to sone sure sum
 of the garage and this is where the light usolly is. This the also nepos to save power since the light will only $6 e$ on when needed
(b) The flowchart below shows how the garage door system is controlled.

Complete the flowchart by placing the statements in the correct positions and adding any missing feedback loops.

Note: Motor forwards opens the door, assume the door is closed at the start.

(c) The flowchart could be modified to include an interrupt system.

Give two reasons why this interrupt needs to be added to the flowchart.

Reason 1: ...it shows Ene Fence............................. if 6 orth
buttons are pressed.

 lop sung it is not a common function

END OF PAPER

8. This question is about ICT, CAD, CAM, Systems and Processes. It is worth a total of 15 marks.
(a) The remote controlled automatic garage door below operates when a remote control is used.

Outside

Inside

When the user presses the yellow button the garage door opens, when the blue button is pressed the door closes. During operation a courtesy light on the Control Unit inside the garage illuminates.
(i) Name one input to the garage door system.
remote
(ii) Name one output to the garage door system.
Sara Control unit illuminates
(iii) Describe the reason for the courtesy light on the Control Unit.

(b) The flowchart below shows how the garage door system is controlled.

Complete the flowchart by placing the statements in the correct positions and adding any missing feedback loops.

Note: Motor forwards opens the door, assume the door is closed at the start.

Statements

Motor backwards

Motor forwards

Is yellow button pressed?

Light/on
Light off

Motor/ stop

(c) The flowchart could be modified to include an interrupt system.

Give two reasons why this interrupt needs to be added to the flowchart.
Reason 1: TOO Stop anything from going

wrong

Reason 2 :
TOO
allow
Change in the
8. This question is about ICT, CAD, CAM, Systems and Processes. It is worth a total of 15 marks.
(a) The remote controlled automatic garage door below operates when a remote control is used.

Outside

Inside

When the user presses the yellow button the garage door opens, when the blue button is pressed the door closes. During operation a courtesy light on the Control Unit inside the garage illuminates.
(i) Name one input to the garage door system.
remote
(ii) Name one output to the garage door system.
Gere control unit illuminates
(iii) Describe the reason for the courtesy light on the Control Unit.

(b) The flowchart below shows how the garage door system is controlled.

Complete the flowchart by placing the statements in the correct positions and adding any missing feedback loops.

Note: Motor forwards opens the door, assume the door is closed at the start.

Statements

Motor baekkwards

Motor forwards

Is yellow button pressed?

Light/on

Light off

Motor/stop
(c) The flowchart could be modified to include an interrupt system.

Give two reasons why this interrupt needs to be added to the flowchart.
Reason 1: TOO Stop anything from going

Reason 2:
TO
allow
Change
in the

- circuit.

8. This question is about ICT, CAD, CAM, Systems and Processes. It is worth a total of 15 marks.
(a) The remote controlled automatic garage door below operates when a remote control is used.

Outside

Inside Garage Door

Control Unit with light and motor

Remote Control

When the user presses the yellow button the garage door opens, when the blue button is pressed the door closes. During operation a courtesy light on the Control Unit inside the garage illuminates.
(i) Name one input to the garage door system.
(ii) Name one output to the garage door system.
(iii) Describe the reason for the courtesy light on the Control Unit.

(b) The flowchart below shows how the garage door system is controlled.

Complete the flowchart by placing the statements in the correct positions and adding any missing feedback loops.

Note: Motor forwards opens the door, assume the door is closed at the start.

(c) The flowchart could be modified to include an interrupt system.

Give two reasons why this interrupt needs to be added to the flowchart.
Reason 1: he flowchall will not Show................... [2]

END OF PAPER
8. This question is about ICT, CAD, CAM, Systems and Processes. It is worth a total of 15 marks.
(a) The remote controlled automatic garage door below operates when a remote control is used.

Outside

Inside

Garage Door

Control Unit with light and motor

Remote Control

When the user presses the yellow button the garage door opens, when the blue button is pressed the door closes. During operation a courtesy light on the Control Unit inside the garage illuminates.
(i) Name one input to the garage door system.
(ii) Name one output to the garage door system.
(iii) Describe the reason for the courtesy light on the Control Unit.

(b) The flowchart below shows how the garage door system is controlled.

Complete the flowchart by placing the statements in the correct positions and adding any missing feedback loops.

Note: Motor forwards opens the door, assume the door is closed at the start.

(c) The flowchart could be modified to include an interrupt system.

Give two reasons why this interrupt needs to be added to the flowchart.
Reason 1: The flow chef will not Show.

END OF PAPER

